二阶与三阶行列式

==解二元线性方程组 \longrightarrow 二阶行列式==

{a11x1+a12x2=b1,a21x1+a22x2=b2.\left\{\begin{array}{l} a_{11} x_1+a_{12} x_2=b_1, \\ a_{21} x_1+a_{22} x_2=b_2 . \end{array}\right.

  • b1{b_1}b2{b_2}:常数
  • aij{a_{ij}}:第ii个方程的第 jj 个未知数 xjx_j 的系数

两个方程两端同时乘以 a22a_{22}a12a_{12}

{a22(a11x1+a12x2)=a22b1a12(a21x1+a22x2)=a12b2\left\{\begin{array}{l} a_{22}\left(a_{11} x_1+a_{12} x_2\right)=a_{22} b_1 \\ a_{12}\left(a_{21} x_1+a_{22} x_2\right)=a_{12} b_2 \end{array}\right.

两式相减,

(a11a22a12a21)x1=b1a22a12b2\left(a_{11} a_{22}-a_{12} a_{21}\right) x_1=b_1 a_{22}-a_{12} b_2

两个方程两端同时乘以 a21a_{21}a11a_{11}

{a21(a11x1+a12x2)=a21b1a11(a21x1+a22x2)=a11b2\left\{\begin{array}{l} a_{21}\left(a_{11} x_1+a_{12} x_2\right)=a_{21} b_1 \\ a_{11}\left(a_{21} x_1+a_{22} x_2\right)=a_{11} b_2 \end{array}\right.

两式相减,

(a11a22a12a21)x2=a11b2b1a21\left(a_{11} a_{22}-a_{12} a_{21}\right) x_2=a_{11} b_2-b_1 a_{21}

如果a11a22a12a210a_{11} a_{22}-a_{12} a_{21}\neq0,可以解出:

x1=b1a22a12b2a11a22a12a21x2=a11b2b1a21a11a22a12a21x_1=\frac{b_1 a_{22}-a_{12} b_2}{a_{11} a_{22}-a_{12} a_{21}} \quad x_2=\frac{a_{11} b_2-b_1 a_{21}}{a_{11} a_{22}-a_{12} a_{21}}

数表

a11a12a21a22\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}

表达式a11a22a12a21a_{11} a_{22}-a_{12} a_{21}

二阶行列式a11a12a21a22\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|

  • aija_{ij}(i,j)(i,j)元,位于第 ii 行第 jj 列的元素
  • ii:行标
  • jj:列标

利用二阶行列式,式子简记为:

b1a22a12b2=b1a12b2a22,a11b2b1a21=a11b1a21b2.b_1 a_{22}-a_{12} b_2=\left|\begin{array}{ll} b_1 & a_{12} \\ b_2 & a_{22} \end{array}\right|, \quad a_{11} b_2-b_1 a_{21}=\left|\begin{array}{ll} a_{11} & b_1 \\ a_{21} & b_2 \end{array}\right| .

若记

D=a11a12a21a22,D1=b1a12b2a22,D2=a11b1a21b2,D=\left|\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|, \quad D_1=\left|\begin{array}{ll} b_1 & a_{12} \\ b_2 & a_{22} \end{array}\right|, \quad D_2=\left|\begin{array}{ll} a_{11} & b_1 \\ a_{21} & b_2 \end{array}\right|,

利用二阶行列式的概念,改写 x1x_1x2x_2 的表示:

x1=D1D=b1a12b2a22a11a12a21a22,x2=D2D=a11b1a21b2a11a12a21a22.x_1=\frac{D_1}{D}=\frac{\left|\begin{array}{ll} b_1 & a_{12} \\ b_2 & a_{22} \end{array}\right|}{\left|\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|}, \quad x_2=\frac{D_2}{D}=\frac{\left|\begin{array}{ll} a_{11} & b_1 \\ a_{21} & b_2 \end{array}\right|}{\left|\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|} .

  • DD:系数行列式

==解三元线性方程组 \longrightarrow 三阶行列式==

{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3\left\{\begin{array}{l} a_{11} x_1+a_{12} x_2+a_{13} x_3=b_1 \\ a_{21} x_1+a_{22} x_2+a_{23} x_3=b_2 \\ a_{31} x_1+a_{32} x_2+a_{33} x_3=b_3 \end{array}\right.

  • b1{b_1}b2{b_2}b3{b_3}:常数
  • aij{a_{ij}}:第 ii 个方程的第 jj 个未知数 xjx_j 的系数

后两个方程两端同时乘以 a33a_{33}a22a_{22}

{a33(a21x1+a22x2+a23x3)=a33b2a23(a31x1+a32x2+a33x3)=a23b3\left\{\begin{array}{l} a_{33}\left(a_{21} x_1+a_{22} x_2+a_{23} x_3\right)=a_{33} b_2 \\ a_{23}\left(a_{31} x_1+a_{32} x_2+a_{33} x_3\right)=a_{23} b_3 \end{array}\right.

两式相减,

(a21a33a23a31)x1+(a22a33a23a32)x2=b2a33a23b3\left(a_{21} a_{33}-a_{23} a_{31}\right) x_1+\left(a_{22} a_{33}-a_{23} a_{32}\right) x_2=b_2 a_{33}-a_{23} b_3

后两个方程两端同时乘以 a32a_{32}a22a_{22}

{a32(a21x1+a22x2+a23x3)=a32b2a22(a31x1+a32x2+a33x3)=a22b3\left\{\begin{array}{l} a_{32}\left(a_{21} x_1+a_{22} x_2+a_{23} x_3\right)=a_{32} b_2 \\ a_{22}\left(a_{31} x_1+a_{32} x_2+a_{33} x_3\right)=a_{22} b_3 \end{array}\right.

两式相减,

(a21a32a22a31)x1+(a23a32a22a33)x3=b2a32a22b3\left(a_{21} a_{32}-a_{22} a_{31}\right) x_1+\left(a_{23} a_{32}-a_{22} a_{33}\right) x_3=b_2 a_{32}-a_{22} b_3

目前得到有方程(1)(2),

(a21a33a23a31)x1+(a22a33a23a32)x2=b2a33a23b3(a21a32a22a31)x1+(a23a32a22a33)x3=b2a32a22b3\begin{aligned} \left(a_{21} a_{33}-a_{23} a_{31}\right) x_1+\left(a_{22} a_{33}-a_{23} a_{32}\right) x_2 & =b_2 a_{33}-a_{23} b_3 \\ \left(a_{21} a_{32}-a_{22} a_{31}\right) x_1+\left(a_{23} a_{32}-a_{22} a_{33}\right) x_3 & =b_2 a_{32}-a_{22} b_3 \end{aligned}

原方程组的第一个方程同时乘以 a22a33a23a32a_{22} a_{33}-a_{23} a_{32} ,得到方程(3)’

(a11a22a33a11a23a32)x1+(a12a22a33a12a23a32)x2+(a13a22a33a13a23a32)x3=b1a22a33b1a23a32\begin{aligned} &\left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right) x_1+\left(a_{12} a_{22} a_{33}-a_{12} a_{23} a_{32}\right) x_2+\left(a_{13} a_{22} a_{33}-a_{13} a_{23} a_{32}\right) x_3=b_1 a_{22} a_{33}-b_1 a_{23} a_{32} \end{aligned}

方程(1)两端乘以a12{-a_{12}},得到方程(1)‘

(a12a23a31a12a21a33)x1+(a12a23a32a12a22a33)x2=a12a23b3a12b2a33\begin{aligned} \left(a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}\right) x_1 &+\left(a_{12} a_{23} a_{32}-a_{12} a_{22} a_{33}\right) x_2=a_{12} a_{23} b_3-a_{12} b_2 a_{33} \end{aligned}

方程(2)两端乘以a13{a_{13}},得到方程(2)‘

(a13a21a32a13a22a31)x1+(a13a23a32a13a22a33)x3a13b2a32a13a22b3\begin{aligned} \left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right) x_1 &+\left(a_{13} a_{23} a_{32}-a_{13} a_{22} a_{33}\right) x_3 a_{13} b_2 a_{32}-a_{13} a_{22} b_3 \end{aligned}

联立方程(1)‘、(2)‘、(3)‘

(a11a22a33a11a23a32)x1+(a12a22a33a12a23a32)x2+(a13a22a33a13a23a32)x3=b1a22a33b1a23a32(a12a23a31a12a21a33)x1+(a12a23a32a12a22a33)x2=a12a23b3a12b2a33(a13a21a32a13a22a31)x1+(a13a23a32a13a22a33)x3=a13b2a32a13a22b3\begin{aligned} \left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right) x_1+\left(a_{12} a_{22} a_{33}-a_{12} a_{23} a_{32}\right) x_2+\left(a_{13} a_{22} a_{33}-a_{13} a_{23} a_{32}\right) x_3 & =b_1 a_{22} a_{33}-b_1 a_{23} a_{32} \\ \left(a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}\right) x_1 +\left(a_{12} a_{23} a_{32}-a_{12} a_{22} a_{33}\right) x_2 & =a_{12} a_{23} b_3-a_{12} b_2 a_{33} \\ \left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right) x_1 +\left(a_{13} a_{23} a_{32}-a_{13} a_{22} a_{33}\right) x_3 & =a_{13} b_2 a_{32}-a_{13} a_{22} b_3 \end{aligned}

三式相加,得到

(a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31)x1=b1a22a33+a12a23b3+a13b2a32a13a22b3a12b2a33b1a23a32\begin{aligned} &\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right. \left.-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}\right) x_1 \\ &=b_1 a_{22} a_{33}+a_{12} a_{23} b_3+a_{13} b_2 a_{32}-a_{13} a_{22} b_3-a_{12} b_2 a_{33}-b_1 a_{23} a_{32} \end{aligned}

数表

a11a12a13a21a22a23a31a32a33\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}

表达式a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}

三阶行列式a11a12a13a21a22a23a31a32a33\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|

利用三阶行列式,等式简记为:

a11a12a13a21a22a23a31a32a33x1=b1a12a13b2a22a23b3a32a33\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right| x_1=\left|\begin{array}{lll} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{array}\right|

同理得到

a11a12a13a21a22a23a31a32a33x2=a11b1a13a21b2a23a31b3a33\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right| x_2=\left|\begin{array}{lll} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{array}\right|

a11a12a13a21a22a23a31a32a33x3=a11a12b1a21a22b2a31a32b3\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right| x_3=\left|\begin{array}{lll} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{array}\right|

若记

D=a11a12a13a21a22a23a31a32a33,D1=b1a12a13b2a22a23b3a32a33,D2=a11b1a13a21b2a23a31b3a33,D3=a11a12b1a21a22b2a31a32b3,D=\left|\begin{array}{ll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|, \quad D_1=\left|\begin{array}{ll} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{array}\right|, \quad D_2=\left|\begin{array}{ll} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{array}\right|, \quad D_3=\left|\begin{array}{ll} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{array}\right|,

利用三阶行列式的概念,改写 x1x_1x2x_2x3x_3 的表示:

x1=D1D,x2=D2D,x3=D3Dx_1=\frac{D_1}{D}, x_2=\frac{D_2}{D}, x_3=\frac{D_3}{D}

  • DD:系数行列式

行列式按一行展开\color{green}{行列式按一行展开}:这里举例按照第一行展开

a11a12a13a21a22a23a31a32a33=a11a22a23a32a33a12a21a23a31a33+a13a21a22a31a32\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|=a_{11}\left|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|-a_{12}\left|\begin{array}{ll} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array}\right|+a_{13}\left|\begin{array}{ll} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right|

再进行拓展

三阶在空间解析几何中

向量积a=a1i+a2j+a3kb=b1i+b2j+b3k\mathbf{a}=a_1 \mathbf{i}+a_2 \mathbf{j}+a_3 \mathbf{k} \quad \mathbf{b}=b_1 \mathbf{i}+b_2 \mathbf{j}+b_3 \mathbf{k}

a×b=ijka1a2a3b1b2b3\begin{aligned} \mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}\right| \end{aligned}

三种表示方法:

a×b=a2a3b2b3ia1a3b1b3j+a1a2b1b2k\mathbf{a} \times \mathbf{b}=\left|\begin{array}{cc} a_2 & a_3 \\ b_2 & b_3 \end{array}\right| \mathbf{i}-\left|\begin{array}{cc} a_1 & a_3 \\ b_1 & b_3 \end{array}\right| \mathbf{j}+\left|\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right| \mathbf{k}

a×b=a2a3b2b3i+a3a1b3b1j+a1a2b1b2k\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll} a_2 & a_3 \\ b_2 & b_3 \end{array}\right| \mathbf{i}+\left|\begin{array}{ll} a_3 & a_1 \\ b_3 & b_1 \end{array}\right| \mathbf{j}+\left|\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right| \mathbf{k}

a×b={a2a3b2b3,a3a1b3b1,a1a2b1b2}\mathbf{a} \times \mathbf{b}=\left\{\left|\begin{array}{ll} a_2 & a_3 \\ b_2 & b_3 \end{array}\right|,\left|\begin{array}{ll} a_3 & a_1 \\ b_3 & b_1 \end{array}\right|,\left|\begin{array}{ll} a_1 & a_2 \\ b_1 & b_2 \end{array}\right|\right\}

以上三种表示方式都是正确的

混合积

  • a=a1i+a2j+a3k={a1,a2,a3}\mathbf{a}=a_1 \mathbf{i}+a_2 \mathbf{j}+a_3 \mathbf{k}=\left\{a_1, a_2, a_3\right\}
  • b=b1i+b2j+b3k={b1,b2,b3}\mathbf{b}=b_1 \mathbf{i}+b_2 \mathbf{j}+b_3 \mathbf{k}=\left\{b_1, b_2, b_3\right\}
  • c=c1i+c2j+c3k={c1,c2,c3}\mathbf{c}=c_1 \mathbf{i}+c_2 \mathbf{j}+c_3 \mathbf{k}=\left\{c_1, c_2, c_3\right\}

b×c={b2b3c2c3,b3b1c3c1,b1b2c1c2}\mathbf{b} \times \mathbf{c}=\left\{\left|\begin{array}{ll}b_2 & b_3 \\ c_2 & c_3\end{array}\right|,\left|\begin{array}{ll}b_3 & b_1 \\ c_3 & c_1\end{array}\right|,\left|\begin{array}{ll}b_1 & b_2 \\ c_1 & c_2\end{array}\right|\right\}

[abc]a(b×c)={a1,a2,a3}{b2b3c2c3,b3b1c3c1,b1b2c1c2}=a1b2b3c2c3+a2b3b1c3c1+a3b1b2c1c2=a1a2a3b1b2b3c1c2c3\begin{aligned} [\mathbf{a} \mathbf{b} \mathbf{c}] \\ &\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})\\ &=\left\{a_1, a_2, a_3\right\} \cdot\left\{\left|\begin{array}{ll} b_2 & b_3 \\ c_2 & c_3 \end{array}\right|,\left|\begin{array}{cc} b_3 & b_1 \\ c_3 & c_1 \end{array}\right|,\left|\begin{array}{cc} b_1 & b_2 \\ c_1 & c_2 \end{array}\right|\right\}\\ &=a_1\left|\begin{array}{ll} b_2 & b_3 \\ c_2 & c_3 \end{array}\right|+a_2\left|\begin{array}{ll} b_3 & b_1 \\ c_3 & c_1 \end{array}\right|+a_3\left|\begin{array}{ll} b_1 & b_2 \\ c_1 & c_2 \end{array}\right|\\ &=\left|\begin{array}{lll} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}\right| \end{aligned}

全排列和对换

排列及其逆序数

全排列(排列):把nn个不同的元素排成一列

逆序:对于 nn 个不同的元素,先规定各元素之间有一个标准次序(例如 nn 个不同的自然数,可规定由小到大为标准次序),于是在这 nn 个元素的任一排列中,当某一对元素的先后次序与标准次序不同时,就说它构成 11 个逆序。

逆序数:一个排列中所有逆序的总数。

逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列

计算排序的逆序数的方法\color{red}{计算排序的逆序数的方法}

不失一般性,不妨设 nn 个元素为11nnnn个自然数,并规定由小到大为标准次序。设 p1p2...pnp_1p_2...p_n 为这nn个自然数的一个排列,考虑元素 pip_ii=1,2,,ni= 1 ,2 ,… , n ) ,如果比 pip_i 大的且排在 pip_i 前面的元素有 tit_i 个,就说 pip_i 这个元素的逆序数是 tit_i

排列的逆序数=全体元素的逆序数之总和:t=t1+t2++tn=i=1ntit=t_1+t_2+\cdots+t_n=\sum_{i=1}^n t_i

对换

对换:在排列中,将任意两个元素对调,其余元素不动。

【定理】一个排列中的任意两个元素兑换,排列改变奇偶性。

证明:

a1alabb1bma_1 \cdots a_l a b b_1 \cdots b_m

  • 相邻对换 a1alabb1bma1albab1bma_1 \cdots a_l a b b_1 \cdots b_m \longrightarrow a_1 \cdots a_l b a b_1 \cdots b_m
    • a<ba<baa的逆序数增加11bb的逆序数不变
    • a>ba>baa的逆序数不变而bb的逆序数增加11
  • 一般对换 a1alab1bmbc1cna1albb1bmac1cna_1 \cdots a_l a b_1 \cdots b_m b c_1 \cdots c_n \longrightarrow a_1 \cdots a_l b b_1 \cdots b_m a c_1 \cdots c_n
    1. a1alab1bmbc1cna1alabb1bmc1cna_1 \cdots a_l a b_1 \cdots b_m b c_1 \cdots c_n \longrightarrow a_1 \cdots a_l a b b_1 \cdots b_m c_1 \cdots c_nmm次对换
    2. a1alabb1bmc1cna1albb1bmac1cna_1 \cdots a_l a b b_1 \cdots b_m c_1 \cdots c_n \longrightarrow a_1 \cdots a_l b b_1 \cdots b_m a c_1 \cdots c_nm+1m+1次对换

累计2m+12m+1次相邻对换,奇偶性发生变换。

n 阶行列式的定义

回忆三阶行列式

a11a12a13a21a22a23a31a32a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31.\begin{aligned} &\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right| \\=& a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} . \end{aligned}

任意一项表示为:a1p1a2p2a3p3a_{1p_1}a_{2p_2}a_{3p_3}

(p1,p2,p3)={(1,2,3),(2,3,1),(3,1,2),(1,3,2),(2,1,3),(3,2,1)}(p_1,p_2,p_3)=\{(1,2,3),(2,3,1),(3,1,2),(1,3,2),(2,1,3),(3,2,1)\}

带正号的三项列标排列是123,231,312;(偶排列)

带负号的三项列标排列是132,213,321。(奇排列)

各项的正负号表示 (1)t(-1)^ttt 为列标排序的逆序数)

因此改写三阶行列式

a11a12a13a21a22a23a31a32a33=(1)ta1p1a2p2a3p3\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\sum(-1)^t a_{1 p_1} a_{2 p_2} a_{3 p_3}

nn 阶行列式

a11a12a1na21a22a2nan1an2ann\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}

自由组合不同行不同列的nn个数的乘积,并冠以符号(1)t(-1)^t并求代数和,得到nn阶行列式。

按照行顺序

a11a12a1na21a22a2nan1an2ann=p1,p2,,pn(1)ta1p1a2p2anpn\left|\begin{array}{llll} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right|=\sum_{p_1, p_2, \ldots, p_n}(-1)^{t} a_{1 p_1} a_{2 p_2} \cdots a_{n p_n}

按照列顺序

a11a12a1na21a22a2nan1an2ann=p1,p2,,pn(1)tap11ap22apnn\left|\begin{array}{llll} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right|=\sum_{p_1, p_2, \ldots, p_n}(-1)^{t} a_{p_1 1} a_{p_2 2} \cdots a_{p_n n}

任意顺序:

a11a12a1na21a22a2nan1an2ann=(1)t(r1...rn)+t(s1...sn)ar1s1ar2s2arnsn\left|\begin{array}{llll} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right|=\sum(-1)^{t(r_1...r_n)+t(s_1...s_n)} a_{r_1 s_1} a_{r_2 s_2} \cdots a_{r_n s_n}

记作 det(aij)det(a_{ij})

注:当 n=1n=1,一阶行列式 a=a|a|=a

主对角行列式:斜边为主对角线。

λ1λ2λn=λ1λ2λ\left|\begin{array}{llll} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \dots & \\ & & & \lambda_n \end{array}\right|=\lambda_1 \lambda_2 \cdots \lambda \text {, }

次对角行列式:斜边为次对角行列式。

λ1λ2λn=λ1λ2λ\left|\begin{array}{llll} & & & \lambda_1 \\ & & \lambda_2 & \\ & \dots & & \\ \lambda_n & & & \end{array}\right|=\lambda_1 \lambda_2 \cdots \lambda \text {, }

行列式的性质

转置行列式

D=a11a12a1na21a22a2nan1an2annD=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|

DT=a11a21an1a12a22an2a1na2nannD^{T}=\left|\begin{array}{cccc} a_{11} & a_{21} & \cdots & a_{n 1} \\ a_{12} & a_{22} & \cdots & a_{n 2} \\ \vdots & \vdots & & \vdots \\ a_{1 n} & a_{2 n} & \cdots & a_{n n} \end{array}\right|

【性质1】行列式与它的转置行列式相等。

证明:

D=det(aij)D=det(a_{ij}) 的转置行列式 D=det(bji)D=det(b_{ji}),按照行列式的定义:

DT=(1)tb1p1b2p2bnpn=(1)tap11ap22apnn=DD^{\mathrm{T}}=\sum(-1)^t b_{1 p_1} b_{2 p_2} \cdots b_{n p_n}=\sum(-1)^t a_{p_1 1} a_{p_2 2} \cdots a_{p_{n^n}}=D

【性质2】对换行列式的两行(列),行列式变号。

证明:

DD 交换第 ii 行与第 jj 列得到 D1D_1

D=xyD=\left|\begin{array}{ccccc} \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & x & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & y & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \end{array}\right|

D=yxD^{\prime}=\left|\begin{array}{ccccc} \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & y & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & x & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \end{array}\right|

任取 DD 中的一项:a1p1aipiajpjanpn=a1p1xyanpna_{1 p_1} \ldots a_{i p_i} \ldots a_{j p_j} \ldots a_{n p_n}=a_{1 p_1} \ldots x \ldots y \ldots a_{n p_n},符号为 (1)τ(p1pipjpn)(-1)^{\tau\left(p_1 \ldots p_i \ldots p_j \ldots p_n\right)}

这一项在 DD^{\prime} 中:a1p1xyanpn=b1p1bjpibipjbnpn=b1p1bipjbjpibnpna_{1 p_1} \ldots x \ldots y \ldots a_{n p_n}=b_{1 p_1} \ldots b_{j p_i} \ldots b_{i p_j} \ldots b_{n p_n}=b_{1 p_1} \ldots b_{i p_j} \ldots b_{j p_i} \ldots b_{n p_n},符号为 (1)τ(p1pjpipn)==(1)τ(p1pipjpn)(-1)^{\tau\left(p_1 \ldots p_j \ldots p_i \ldots p_n\right)}==-(-1)^{\tau\left(p_1 \ldots p_i \cdots p_j \ldots p_n\right)}

得到这一项在 DD^{\prime}DD 中所带符号相反。

这里为任意所取的一项,那么所有对应项所带符号恰好相反。

所以 D=DD^{\prime}=D

【推论】

  • 奇数次互换行列式的两行(两列),行列式变号。

  • 偶数次互换行列式的两行(两列),行列式不变。

【推论】如果行列式有两行(列)完全相同,则此行列式等于零。

【性质3】行列式的某一行(列)中所有的元素都乘以同一数 kk,等于用数 kk 乘此行列式。

证明:

a11a12a1nkai1kai2kainan1an2ann=(1)τ(p1p2pn)a1p1(kaipi)anpn=k(1)τ(p1p2pn)a1p1aipianpn=KD\left|\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ \ldots & \ldots & \ldots & \ldots \\ k a_{i 1} & k a_{i 2} & \ldots & k a_{i n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right|=\sum(-1)^{\tau\left(p_1 p_2 \ldots p_n\right)} a_{1 p_1 } \cdots \left(k a_{i p_i}\right) \cdots a_{n p_n}=k \sum(-1)^{\tau\left(p_1 p_2 \cdots p_n\right)} a_{1 p_1} \cdots a_{i p_i} \cdots a_{n p_n}=KD

【推论】

  • 行列式中某一行(列)的公因子可以提到行列式外。

  • 可以将行列式外的乘积因子乘到行列式的某一行(列)。

【性质4】行列式中如果有两行(列)元素成比例,则此行列式等于零。

【性质5】若行列式的某一行(列)的元素都是两数之和,例如第 ii 行的元素都是两数之和:

D=a11a12a1nbi1+ci1bi2+ci2bin+cinan1an2annD=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{i 1}+c_{i 1} & b_{i 2}+c_{i 2} & \cdots & b_{i n}+c_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|

DD 等于下列两个行列式之和:

D=a11a12a1nbi1bi2binan1an2ann+a11a12a1nci1ci2cinan1an2annD=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{i 1} & b_{i 2} & \cdots & b_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|+\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ c_{i 1} & c_{i 2} & \cdots & c_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|

证明:

D=a11a12a1nbi1+ci1bi2+ci2bin+cinan1an2ann=(1)τ(p1p2pn)a1p1(bipi+cipi)anpn=(1)τ(p1p2pn)a1p1bipianpn+(1)τ(p1p2pn)a1p1cipianpn=D1+D2D=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{i 1}+c_{i 1} & b_{i 2}+c_{i 2} & \cdots & b_{i n}+c_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right| \\ \begin{aligned} = & \sum(-1)^{\tau\left(p_1 p_2 \cdots p_n\right)} a_{1 p_1} \ldots\left(b_{i p_i}+c_{i p_i}\right) \cdots a_{n p_n} \\ \\ = & \sum(-1)^{\tau\left(p_1 p_2 \cdots p_n\right)} a_{1 p_1} \ldots b_{i p_i} \cdots a_{n p_n}+\sum(-1)^{\tau\left(p_1 p_2 \cdots p_n\right)} a_{1 p_1} \ldots c_{i p_i} \cdots a_{n p_n} \\ \\ = & D_1+D_2 \end{aligned}

性质3和性质5统称为行列式的线性性质(线性运算)。

【性质6】把行列式的某一行(列)的各元素乘以同样数然后加到另一行(列)对应的元素上去,行列式不变。

证明:利用【性质4】【性质5】可以推出来。

行列式按一行(列)展开

余子式:在 nn 阶行列式中,把元素 aija_{ij} 所在的第 ii 行和第 jj 列划去后,留下来的 n1n-1 阶行列式称为元素 aija_{ij} ,记作 MijM_{ij}

代数余子式(1)i+jMij(-1)^{i+j}M_{ij},记作 AijA_{ij}

【定理】行列式等于它的某一行(列)的所有元素与它们对应的代数余子式的乘积之和。

【引理】设 nn 阶行列式 DD 的第 ii 行, 除 aija_{i j} 外都为零, 则 D=aijAijD=a_{i j} A_{i j}

  • 按第 ii 行展开:

D=ai1Ai1+ai2Ai2++ainAinD=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\ldots+a_{i n} A_{i n}

  • 按第 jj 列展开:

D=a1jA1j+a2jA2j++anjAnjD=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\ldots+a_{n j} A_{n j}

【命题】行列式某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于 00

  • 按第 ii 行展开:

ai1Aj1+ai2Aj2++ainAjn=0(ji)a_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\ldots+a_{i n} A_{j n}=0 \quad(j \neq i)

  • 按第 jj 列展开:

a1iA1j+a2iA2j++aniAnj=0(ji)a_{1 i} A_{1 j}+a_{2 i} A_{2 j}+\ldots+a_{n i} A_{n j}=0(j \neq i)

【定理】【命题】统一表示:

ai1Aj1+ai2Aj2++ainAjn={D,j=i0,jia_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\ldots+a_{i n} A_{j n}=\left\{\begin{array}{l} D, j=i \\ 0, j \neq i \end{array}\right.

范德蒙行列式

Vn=1111x1x2x3xnx12x22x32xn2x1n2x2n2x3n2xnn2x1n1x2n1x3n1xnn1V_n=\left|\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{array}\right|

V2=11x1x2=x2x1V_2=\left|\begin{array}{cc}1 & 1 \\ x_1 & x_2\end{array}\right|=x_2-x_1

假设等式对于 n1n-1Vn1=ni>j2(xixj)V_{n-1}=\prod_{n \geq i>j \geq 2}\left(x_i-x_j\right)

从最后一行起,依次用下一行减去上一行的 x1x_1

Vn=11110x2x1x3x1xnx10x22x1x2x32x1x3xn2x1xn0x2n2x1x2n3x3n2x1x3n3xnn2x1xnn30x2n1x1x2n2x3n1x1x3n2xnn1x1xnn2V_n=\left|\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 0 & x_2-x_1 & x_3-x_1 & \cdots & x_n-x_1 \\ 0 & x_2^2-x_1 x_2 & x_3^2-x_1 x_3 & \cdots & x_n^2-x_1 x_n \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & x_2^{n-2}-x_1 x_2^{n-3} & x_3^{n-2}-x_1 x_3^{n-3} & \cdots & x_n^{n-2}-x_1 x_n^{n-3} \\ 0 & x_2^{n-1}-x_1 x_2^{n-2} & x_3^{n-1}-x_1 x_3^{n-2} & \ldots & x_n^{n-1}-x_1 x_n^{n-2}\end{array}\right|

用上述【定理】

Vn=x2x1x3x1xnx1x22x1x2x32x1x3xn2x1xnx2n2x1x2n3x3n2x1x3n3xnn2x1xnn3x2n1x1x2n2x3n1x1x3n2xnn1x1xnn2V_n =\left|\begin{array}{cccc}x_2-x_1 & x_3-x_1 & \cdots & x_n-x_1 \\ x_2^2-x_1 x_2 & x_3^2-x_1 x_3 & \cdots & x_n^2-x_1 x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2}-x_1 x_2^{n-3} & x_3^{n-2}-x_1 x_3^{n-3} & \cdots & x_n^{n-2}-x_1 x_n^{n-3} \\ x_2^{n-1}-x_1 x_2^{n-2} & x_3^{n-1}-x_1 x_3^{n-2} & \ldots & x_n^{n-1}-x_1 x_n^{n-2}\end{array}\right|

Vn=(x2x1)(x3x1)(xnx1)111x2x3xnx2n3x3n3xnn3x2n2x3n2xnn2V_n =\left(x_2-x_1\right)\left(x_3-x_1\right) \cdots\left(x_n-x_1\right)\left|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-3} & x_3^{n-3} & \cdots & x_n^{n-3} \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{array}\right|

即:

Vn=(x2x1)(x3x1)(xnx1)Vn1=(x2x1)(x3x1)(xnx1)ni>j2(xixj)=ni2(xix1)ni>j2(xixj)=ni>j1(xixj)\begin{aligned} V_{n} & =\left(x_2-x_1\right)\left(x_3-x_1\right) \cdots\left(x_n-x_1\right)V_{n-1} \\ & = \left(x_2-x_1\right)\left(x_3-x_1\right) \ldots\left(x_n-x_1\right) \prod_{n \geq i>j \geq 2}\left(x_i-x_j\right) \\ & = \prod_{n \geq i \geq 2}\left(x_i-x_1\right) \cdot \prod_{n \geq i>j \geq 2}\left(x_i-x_j\right) \\ & = \prod_{n \geq i>j \geq 1}\left(x_i-x_j\right) \end{aligned}

行列式按 k 行(列)展开

子式:设 DDnn 阶行列式,在 DD 中任意选定 kkkk 列(1kn1 \leqslant k \leqslant n),则位于这些行和列的交叉上的 k2k^2 个元素按照原来位置组成的 kk 阶行列式 MM 称为 DD 的一个 kk 阶子式。

子式的余子式:在 DD 中划去上述 kkkk 列后余下的元素按照原来的位置组成的 nkn-k 阶行列式 MM^{\prime} 称为 DD 的一个 kk 阶子式 MM 的余子式。

代数余子式:设 MMDD 中的第 i1,i2,,iki_1, i_2, \ldots, i_k 行和第 j1,j2,,jkj_1, j_2, \ldots, j_k 的元素构成的 kk 阶子式,MM^{\prime}MM 的余子式,则

A=(1)(i1+i2++ik)+(j1+j2++jk)MA=(-1)^{\left(i_1+i_2+\ldots+i_k\right)+\left(j_1+j_2+\ldots+j_k\right)} M^{\prime}

称为 DD 的一个 kk 阶子式 MM 的代数余子式。

【定理】拉普拉斯定理:设在 nn 阶行列式 DD 中任意取定 kk 行(1kn1 \leqslant k \leqslant n),则由这 kk 行元素所组成的一切 kk 阶子式与它们的代数余子式的乘积之和等于行列式 DD

行列式的翻转与旋转

D=a11a12a1na21a22a2nan1an2annD=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right|

上下翻转

Du=an1an2annan1,1an1,2an1,na11a12a1nD_u=\left|\begin{array}{cccc} a_{n1} & a_{n2} & \cdots & a_{n n} \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \\ \vdots & \vdots & & \vdots \\ a_{11} & a_{12} & \cdots & a_{1n} \end{array}\right|

有:

Du=(1)n(n1)2DD_u=(-1)^\frac{n(n-1)}{2}D

左右翻转

Dl=a1na1,n1a11a2na2,n1a21annan,n1an1D_l=\left|\begin{array}{cccc} a_{1n} & a_{1,n-1} & \cdots & a_{11} \\ a_{2n} & a_{2,n-1} & \cdots & a_{21} \\ \vdots & \vdots & & \vdots \\ a_{nn} & a_{n,n-1} & \cdots & a_{n1} \end{array}\right|

有:

Dl=(1)n(n1)2DD_l=(-1)^\frac{n(n-1)}{2}D

主对角线翻转:转置

DT=a11a21an1a12a22an2a1na2nannD^T=\left|\begin{array}{cccc} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{array}\right|

有:

DT=DD^T=D

次对角线翻转

Ds=annan1,na1nan,n1an1,n1a1,n1an1an1,1a11D_s=\left|\begin{array}{cccc} a_{nn} & a_{n-1,n} & \cdots & a_{1n} \\ a_{n,n-1} & a_{n-1,n-1} & \cdots & a_{1,n-1} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n-1,1} & \cdots & a_{11} \end{array}\right|

有:

DsD_s 经过上下翻转和左右翻转得到 DTD^T

Ds=(1)n(n1)2(1)n(n1)2DT=DT=DD_s=(-1)^\frac{n(n-1)}{2}(-1)^\frac{n(n-1)}{2}D^T=D^T=D

逆时针旋转 9090^{\circ}

D90=a1na2nanna1,n1a2,n1an,n1a11a21an1D_{90}=\left|\begin{array}{cccc} a_{1n} & a_{2n} & \cdots & a_{nn} \\ a_{1,n-1} & a_{2,n-1} & \cdots & a_{n,n-1} \\ \vdots & \vdots & & \vdots \\ a_{11} & a_{21} & \cdots & a_{n1} \end{array}\right|

有:

D90D_{90} 经过转置,左右翻转得到 DD

D90=(1)n(n1)2DD_{90}=(-1)^\frac{n(n-1)}{2}D

逆时针旋转 180180^{\circ}

D180=annan,n1an1an1,nan1,n1an1,1a1na1,n1a11D_{180}=\left|\begin{array}{cccc} a_{nn} & a_{n,n-1} & \cdots & a_{n1} \\ a_{n-1,n} & a_{n-1,n-1} & \cdots & a_{n-1,1} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{1,n-1} & \cdots & a_{11} \end{array}\right|

有:

D90D_{90} 逆时针旋转 9090^{\circ} 得到 D180D_{180}

D180=(1)n(n1)2D90=(1)n(n1)2(1)n(n1)2D=DD_{180}=(-1)^\frac{n(n-1)}{2}D_{90}=(-1)^\frac{n(n-1)}{2}(-1)^\frac{n(n-1)}{2}D=D

顺时针旋转 9090^{\circ}

D90D_{90}^{\prime}DD 顺时针旋转 9090^{\circ} 得到的,换言之,DDD90D_{90}^{\prime} 逆时针旋转 9090^{\circ} 得到的。

D=(1)n(n1)2D90D=(-1)^\frac{n(n-1)}{2}D_{90}^{\prime}

(1)n(n1)2D=(1)n(n1)2(1)n(n1)2D90(-1)^\frac{n(n-1)}{2}D=(-1)^\frac{n(n-1)}{2}(-1)^\frac{n(n-1)}{2}D_{90}^{\prime}

D90=(1)n(n1)2DD_{90}^{\prime}=(-1)^\frac{n(n-1)}{2}D

顺时针旋转 180180^{\circ}

同上可得:

D180=DD_{180}^{\prime}=D

操作 关系
上下翻转 Du=(1)n(n1)2DD_u=(-1)^\frac{n(n-1)}{2}D
左右翻转 Dl=(1)n(n1)2DD_l=(-1)^\frac{n(n-1)}{2}D
主对角线翻转 DT=DD^T=D
次对角线翻转 Ds=DD_s=D
逆时针旋转 9090^{\circ} D90=(1)n(n1)2DD_{90}=(-1)^\frac{n(n-1)}{2}D
逆时针旋转 180180^{\circ} D180=DD_{180}=D
顺时针旋转 9090^{\circ} D90=(1)n(n1)2DD_{90}^{\prime}=(-1)^\frac{n(n-1)}{2}D
顺时针旋转 180180^{\circ} D180=DD_{180}^{\prime}=D

计算行列式

行列式的计算

意义 记号 行列式
交换 iijj 两行 rirjr_i \leftrightarrow r_j 行列式变号
ii 行乘以 kk ri×kr_i \times k 行列式乘以 kk
jj 行乘以 kk 加到第 ii ri+krjr_i+k r_j 行列式不变
交换 iijj 两列 cicjc_i \leftrightarrow c_j 行列式变号
ii 列乘以 kk ci×kc_i \times k 行列式乘以 kk
jj 列乘以 kk 加到第 ii ci+kcjc_i+k c_j 行列式不变

对应上述【性质2】【性质3】【性质5】

爪型行列式

D=a0b1b2bnd1a1d2a2dnanD=\left|\begin{array}{cccc} a_0 & b_1 & b_2 & \cdots & b_n \\ d_1 & a_1 & & \\ d_2 & & a_2 & \\ \vdots & & & \ddots & \\ d_n & & & & a_n \end{array}\right|

其余元素均为 00

经过 c1djajc_1-\frac{d_j}{a_j}j=2,,nj=2,\cdots,n

得到

D=a0d1a1b1dnanbnb1b2bn0a10a20anD=\left|\begin{array}{cccc} a_0-\frac{d_1}{a_1} b_1-\cdots-\frac{d_n}{a_n} b_n & b_1 & b_2 & \cdots & b_n \\ 0 & a_1 & & \\ 0 & & a_2 & \\ \vdots & & & \ddots & \\ 0 & & & & a_n \end{array}\right|

因此

D=(a0d1a1b1dnanbn)a1a2anD=\left(a_0-\frac{d_1}{a_1} b_1-\cdots-\frac{d_n}{a_n} b_n\right) a_1 a_2 \cdots a_n

分块行列式:可用范德蒙行列式或拉普拉斯定理推导。

A0CB=AB\left|\begin{array}{ll} A & 0 \\ C & B \end{array}\right|=|A||B|

 

解:

取第 11 行和第 2n2n 行,只有一个非零子式:

M=anbncndnM=\left|\begin{array}{ll} a_n & b_n \\ c_n & d_n \end{array}\right|

MM 的余子式:M=D2(n1)M^{\prime}=D_{2(n-1)}

MM 的代数余子式:A=(1)(1+2n)+(1+2n)M=(1)(1+2n)+(1+2n)D2(n1)=D2(n1)A=(-1)^{(1+2 n)+(1+2 n)}M^{\prime}=(-1)^{(1+2 n)+(1+2 n)}D_{2(n-1)}=D_{2(n-1)}

根据【定理】拉普拉斯定理

D2n=MA=anbncndnD2(n1)D_{2 n}=M A=\left|\begin{array}{ll} a_n & b_n \\ c_n & d_n \end{array}\right| D_{2(n-1)}

递归公式:

D2n=anbncndnD2(n1)=anbncndnan1bn1cn1dn1D2(n2)=anbncndnan1bn1cn1dn1a2b2c2d2D2=anbncndnan1bn1cn1dn1a2b2c2d2a1b1c1d1\begin{aligned} D_{2 n}& =\left|\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right| D_{2(n-1)} \\ & =\left|\begin{array}{ll} a_n & b_n \\ c_n & d_n \end{array}\right| \cdot\left|\begin{array}{cc} a_{n-1} & b_{n-1} \\ c_{n-1} & d_{n-1} \end{array}\right| D_{2(n-2)} \\ & =\left|\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right| \cdot\left|\begin{array}{cc} a_{n-1} & b_{n-1} \\ c_{n-1} & d_{n-1} \end{array}\right| \ldots\left|\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right| D_2 \\ & =\left|\begin{array}{ll} a_n & b_n \\ c_n & d_n \end{array}\right| \cdot\left|\begin{array}{cc} a_{n-1} & b_{n-1} \\ c_{n-1} & d_{n-1} \end{array}\right| \ldots\left|\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right|\left|\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right| \\ \end{aligned}

D2n=(an1dn1bn1cn1)(a1d1b1c1)=i=1n(aidibici)\begin{aligned} D_{2n} & = \left(a_{n-1} d_{n-1}-b_{n-1} c_{n-1}\right) \cdots\left(a_1 d_1-b_1 c_1\right) \\ & =\prod_{i=1}^n\left(a_i d_i-b_i c_i\right) \end{aligned}

下三角行列式:斜边为主对角线,上角均为 00

D=a11a21a220an1an2ann=a11a22annD=\left|\begin{array}{cccc} a_{11} & & & \\ a_{21} & a_{22} & & 0 \\ \vdots & \vdots & \ddots & \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=a_{11} a_{22} \cdots a_{n n}

左右翻转,得到斜边为次对角线,上角均为 00次下三角行列式

D=(1)n(n1)2DD^{\prime}=(-1)^\frac{n(n-1)}{2}D

克拉默法则

{a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn\left\{\begin{array}{c} a_{11} x_1+a_{12} x_2+\ldots+a_{1 n} x_n=b_1 \\ a_{21} x_1+a_{22} x_2+\ldots+a_{2 n} x_n=b_2 \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ a_{n 1} x_1+a_{n 2} x_2+\ldots+a_{n n} x_n=b_n \end{array}\right.

D=a11a12a1na21a22a2nan1an2ann0D=\left|\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} \end{array}\right| \neq 0

如果线性方程组的系统行列式不等于 00,则线性方程组有唯一解。

x1=D1D,x2=D2D,,xn=DnDx_1=\frac{D_1}{D}, x_2=\frac{D_2}{D}, \cdots, x_n=\frac{D_n}{D}

其中 DjD_jj=1,,nj=1,\cdots,n

Dj=a11a1,j1b1a1,j+1a1na21a2,j1b2a2,j+1a2nan1an,j1bnan,j+1annD_j=\left|\begin{array}{ccccccc} a_{11} & \cdots & a_{1, j-1} & b_1 & a_{1, j+1} & \cdots & a_{1 n} \\ a_{21} & \cdots & a_{2, j-1} & b_2 & a_{2, j+1} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & \cdots & a_{n, j-1} & b_n & a_{n, j+1} & \cdots & a_{n n} \end{array}\right|

证明:

  1. 先证 x1=D1D,x2=D2D,,xn=DnDx_1=\frac{D_1}{D}, x_2=\frac{D_2}{D}, \cdots, x_n=\frac{D_n}{D} 是方程组的解。

只需验证满足第 ii 个方程,即

ai1x1+ai2x2++ainxn=bia_{i 1} x_1+a_{i 2} x_2+\ldots+a_{i n} x_n=b_i

也即

ai1D1D+ai2D2D++ainDnD=bia_{i 1} \frac{D_1}{D}+a_{i 2} \frac{D_2}{D}+\ldots+a_{i n} \frac{D_n}{D}=b_i

AijA_{ij}i=1,,ni=1,\cdots,nDjD_j 的关于第 jj 列的代数余子式

Dj=b1A1j+b2A2j++bnAnj,j=1,,nD_j=b_1 A_{1 j}+b_2 A_{2 j}+\ldots+b_n A_{n j},j=1,\cdots,n

上式左端

 左端 =1D(ai1D1+ai2D2++ainDn)=1D[ai1(b1A11+b2A21++bnAn1)+ai2(b1A12+b2A22++bnAn2)++ain(b2A1n+b2A2n++bnAnn)]=1D[b1(ai1A11+ai2A12++ainA1n)+b2(ai1A21+ai2A22++ainA2n)++bi(ai1Ai1+ai2Ai2++ainAin)++bn(ai1An1+ai2An2++ainAnn)\begin{aligned} \text { 左端 }= & \frac{1}{D}\left(a_{i 1} D_1+a_{i 2} D_2+\cdots+a_{i n} D_n\right)\\ = &\frac{1}{D}[a_{i 1}\left(b_1 A_{11}+b_2 A_{21}+\cdots+b_n A_{n 1}\right) + a_{i 2}\left(b_1 A_{12}+b_2 A_{22}+\cdots+b_n A_{n 2}\right)+\cdots + a_{i n}\left(b_2 A_{1n}+b_2 A_{2n}+\cdots+b_n A_{n n}\right)] \\ = & \frac{1}{D}[b_1\left(a_{i 1} A_{11}+a_{i 2} A_{12}+\cdots+a_{i n} A_{1 n}\right) +b_2\left(a_{i 1} A_{21}+a_{i 2} A_{22}+\cdots+a_{i n} A_{2 n}\right)+\cdots + b_i\left(a_{i 1} A_{i1}+a_{i 2} A_{i2}+\cdots+a_{i n} A_{i n}\right)+\cdots + b_n\left(a_{i 1} A_{n1}+a_{i 2} A_{n2}+\cdots+a_{i n} A_{n n}\right) \end{aligned}

又(考虑第 DD 的 第 ii 行)

ai1Aj1+ai2Aj2++ainAjn={D,j=i0,jia_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\ldots+a_{i n} A_{j n}=\left\{\begin{array}{l} D,j=i \\ 0,j \neq i \end{array}\right.

 左端 =1D[0+0++D++0]=1DbiD=bi= 右端 \begin{aligned} \text { 左端 }= \frac{1}{D}[0+0+\cdot+D+\cdots+0]=\frac{1}{D} b_i D=b_i=\text { 右端 } \end{aligned}

所以 xjx_jj=1,2,,nj=1,2,\cdots,n)验证满足第 ii 个方程(i=1,2,,ni=1,2,\cdots,n)。

  1. 再来证明解的唯一性

xj=cjx_j=c_jj=1,2,,nj=1,2,\cdots,n)满足

{a11c1+a12c2++a1ncn=b1a21c1+a22c2++a2ncn=b2an1c1+an2c2++anncn=bn\left\{\begin{array}{c} a_{11} c_1+a_{12} c_2+\cdots+a_{1 n} c_n=b_1 \\ a_{21} c_1+a_{22} c_2+\cdots+a_{2 n} c_n=b_2 \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ a_{n 1} c_1+a_{n 2} c_2+\cdots+a_{n n} c_n=b_n \end{array}\right.

只需证明:c1=D1D,c2=D2D,,cn=DnDc_1=\frac{D_1}{D}, c_2=\frac{D_2}{D}, \cdots, c_n=\frac{D_n}{D}

DD 的第 jj 列元素的代数余子式 AijA_{ij}i=1,,ni=1,\cdots,n 分别乘以以上等式两端,得

{(a11c1+a12c2++a1ncn)A1j=b1A1j(a21c1+a22c2++a2ncn)A2j=b2A2j(an1c1+an2c2++anncn)Anj=bnAnj\left\{\begin{array}{c} (a_{11} c_1+a_{12} c_2+\cdots+a_{1 n} c_n)A_{1 j}=b_1A_{1 j} \\ (a_{21} c_1+a_{22} c_2+\cdots+a_{2 n} c_n)A_{2 j}=b_2A_{2 j} \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ (a_{n 1} c_1+a_{n 2} c_2+\cdots+a_{n n} c_n)A_{n j}=b_nA_{n j} \end{array}\right.

所以方程两端相加

(a11A1j+a21A2j++an1Anj)c1++(a1jA1j+a2jA2j++anjAnj)cj++(a1nA1j+a2nA2j++annAnj)cn=b1A1j+b2A2j++bnAnj\begin{aligned} \left(a_{11} A_{1 j}+a_{21} A_{2 j}+\ldots+a_{n 1} A_{n j}\right) c_1 +\cdots+\left(a_{1j} A_{1 j}+a_{2j} A_{2 j}+\ldots+a_{n j} A_{n j}\right) c_j+\cdots+\left(a_{1n} A_{1 j}+a_{2n} A_{2 j}+\ldots+a_{n n} A_{n j}\right) c_n=b_1 A_{1 j}+b_2 A_{2 j}+\ldots+b_n A_{n j} \end{aligned}

又(考虑第 DD 的 第 ii 列)

a1iA1j+a2iA2j++aniAnj={D,j=i0,jia_{1 i} A_{1 j}+a_{2 i} A_{2 j}+\ldots+a_{n i} A_{n j}=\left\{\begin{array}{l} D,j=i \\ 0,j \neq i \end{array}\right.

0c1++Dcj++0cn=b1A1j+b2A2j++bnAnj0 \cdot c_1+\cdots+D \cdot c_j +\cdots+0 \cdot c_n=b_1 A_{1 j}+b_2 A_{2 j}+\ldots+b_n A_{n j}

Dcj=DjD c_j=D_j

cj=DjD(j=1,2,,n)c_j=\frac{D_j}{D} \quad(j=1,2, \ldots, n)

得证!

克拉默法则的应用及线性方程组解的讨论

微积分

在由方程组所确定的隐函数的微分运算中,常常用克拉默法则,来求隐函数的导数和偏导数。

设方程组 {x=eu+usinvy=euucosv\left\{\begin{array}{l}x=e^u+u \sin v \\ y=e^u-u \cos v\end{array}\right. 确定了两个二元函数 {u=u(x,y)v=v(x,y)\left\{\begin{array}{l}u=u(x, y) \\ v=v(x, y)\end{array}\right.,求偏导数 ux,uy\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}

解:

方程组两边对 xx 求偏导

{1=euux+uxsinv+ucosvvx0=euuxuxcosv+usinvvx\left\{\begin{aligned} & 1=e^u \frac{\partial u}{\partial x}+\frac{\partial u}{\partial x} \sin v+u \cos v \frac{\partial v}{\partial x} \\ & 0=e^u \frac{\partial u}{\partial x}-\frac{\partial u}{\partial x} \cos v+u \sin v \frac{\partial v}{\partial x} \end{aligned}\right.

{(eu+sinv)ux+ucosvvx=1(eucosv)ux+usinvvx=0\left\{\begin{array}{l} \left(e^u+\sin v\right) \frac{\partial u}{\partial x}+u \cos v \frac{\partial v}{\partial x}=1 \\ \left(e^u-\cos v\right) \frac{\partial u}{\partial x}+u \sin v \frac{\partial v}{\partial x}=0 \end{array}\right.

  • ux=1ucosv0usinveu+sinvucosveucosvusinv=sinv1+eu(sinvcosv)\frac{\partial u}{\partial x}=\frac{\left|\begin{array}{ll}1 & u \cos v \\ 0 & u \sin v\end{array}\right|}{\left|\begin{array}{ll}e^u+\sin v & u \cos v \\ e^u-\cos v & u \sin v\end{array}\right|}=\frac{\sin v}{1+e^u(\sin v-\cos v)}
  • vx=eu+sinv1eucosv0eu+sinvucosveucosvusinv=cosveuu[1+eu(sinvcosv)]\frac{\partial v}{\partial x}=\frac{\left|\begin{array}{ll}e^u+\sin v & 1 \\ e^u-\cos v & 0\end{array}\right|}{\left|\begin{array}{ll}e^u+\sin v & u \cos v \\ e^u-\cos v & u \sin v\end{array}\right|}=\frac{\cos v-e^u}{u\left[1+e^u(\sin v-\cos v)\right]}

多项式插值与插值曲线

插值多项式:设 (xi,yix_i,y_i),(i=1,,n+1i=1,\cdots,n+1)是 n+1n+1 个横坐标不同的点,则有唯一的次数不超过 nn 次的多项式:

p(x)=a0+a1x+a2x2++anxnp(x)=a_0+a_1 x+a_2 x^2+\ldots+a_n x^n

满足 p(xi)=yip(x_i)=y_i,(i=1,,n+1i=1,\cdots,n+1

插值曲线:有唯一次数不超过 nn 次的曲线 y=a0+a1x+a2x2++anxny=a_0+a_1 x+a_2 x^2+\ldots+a_n x^n 经过上述给定的 n+1n+1 个点。

证明:

n+1n+1 个点带入方程,得到以 a0,a1,,ana_0,a_1,\cdots,a_n 为未知数的线性方程组:

{a0+a1x1++anx1n=y1a0+a1x2++anx2n=y2a0+a1xn+1++anxn+1n=yn+1\left\{\begin{array}{c} a_0+a_1 x_1+\ldots+a_n x_1^n=y_1 \\ a_0+a_1 x_2+\ldots+a_n x_2^n=y_2 \\ \ldots \ldots \ldots \ldots \ldots \ldots \\ a_0+a_1 x_{n+1}+\ldots+a_n x_{n+1}^n=y_{n+1} \end{array}\right.

系数行列式 DD

D=1x1x1n1x2x2n1xn+1xn+1n=j<i(xixj)0D=\left|\begin{array}{cccc} 1 & x_1 & \cdots & x_1^n \\ 1 & x_2 & \cdots & x_2^n \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_{n+1} & \cdots & x_{n+1}^n \end{array}\right|=\prod_{j<i}\left(x_i-x_j\right) \neq 0

方程组有唯一的解:ai=DiD(j=0,1,,n+1)a_i=\frac{D_{i}}{D} \quad(j=0,1, \ldots, n+1)

p(x)=1D(D1+D2x+D3x2++Dn+1xn)p(x)=\frac{1}{D}\left(D_1+D_2 x+D_3 x^2+\ldots+D_{n+1} x^n\right)